Translate

Wednesday, November 6, 2013

IC engine


IC ENGINE

The internal combustion engine (ICE) is a heat engine that converts chemical energy in a fuel into mechanical energy, usually made available on a rotating output shaft. Chemical energy of the fuel is first converted to thermal energy by means of combustion or oxidation with air inside the engine. This thermal energy raises the temperature  and pressure of the gases within the engine, and the high-pressure gas then expands against the mechanical mechanisms of the engine. This expansion is converted  by the mechanical linkages of the engine to a rotating crankshaft, which is the output of the engine. The crankshaft, in turn, is connected to a transmission and/or power train to transmit the rotating mechanical energy to the desired final
use. For engines this will often be the propulsion of a vehicle (i.e., automobile, truck, locomotive, marine vessel, or airplane). Other applications include stationary engines to drive generators or pumps, and portable engines for things like chain saws and lawn mowers.Most internal combustion engines are reciprocating engines having pistons that reciprocate back and forth in cylinders internally within the engine. This book concentrates on the thermodynamic study of this type of engine. Other types of IC engines also exist in much fewer numbers, one important one being the rotary engine [104]. These engines will be given brief coverage. Engine types not covered by this book include steam engines and gas turbine engines, which are better classified as external combustion engines (i.e., combustion takes place outside the mechanical engine system). Also not included in this book, but which could be classified as internal combustion engines, are rocket engines, jet engines, and firearms. Reciprocating engines can have one cylinder or many, up to 20 or more. The cylinders can be arranged in many different geometric configurations. Sizes range from small model airplane engines with power output on the order of 100 watts to large multicylinder stationary engines that produce thousands of kilowatts per cylinder. There are so many different engine manufacturers, past, present, and future, that produce and have produced engines which differ in size, geometry, style, and operating characteristics that no absolute limit can be stated for any range of engine characteristics (i.e., size, number of cylinders, strokes in a cycle, etc.). This book will work within normal characteristic ranges of engine geometries and operating parameters, but there can always be exceptions to these. Early development of modern internal combustion engines occurred in the latter half of the 1800s and coincided with the development of the automobile. History records earlier examples of crude internal combustion engines and self-propelledroad vehicles dating back as far as the 1600s [29]. Most of these early vehicles were steam-driven prototypes which never became practical operating vehicles. Technology, roads, materials, and fuels were not yet developed enough. Very early examples of heat engines, including both internal combustion and external combustion, used gun powder and other solid, liquid, and gaseous fuels. Major development of the modern steam engine and, consequently, the railroad locomotive occurred in the latter half of the 1700s and early 1800s. By the 1820s and 1830s, railroads were present in several countries around the world.
  

HISTORIC-ATMOSPHERIC ENGINES

Most of the very earliest internal combustion engines of the 17th and 18th centuries can be classified as atmospheric engines. These were large engines with a single piston and cylinder, the cylinder being open on the end. Combustion was initiated in the open cylinder using any of the various fuels which were available. Gunpowder was often used as the fuel. Immediately after combustion, the cylinder would be full of hot exhaust gas at atmospheric pressure. At this time, the cylinder end was closed and the trapped gas was allowed to cool. As the gas cooled, it creFigure  1-1 The Charter Engine made in 1893 at the Beloit works of Fairbanks, Morse & Company was one of the first successful gasoline engine offered for sale in the United States. Printed with permission, Fairbanks Morse Engine Division, Coltec Industries. ated a vacuum within the cylinder. This caused a pressure differential across the piston, atmospheric pressure on one side and a vacuum on the other. As the piston moved because of this pressure differential, it would do work by being connected to an external system, such as raising a weight Some early steam engines also were atmospheric engines. Instead of combustion, the open cylinder was filled with hot steam. The end was then closed and the steam was allowed to cool and condense. This created the necessaryvacuum.
In addition to a great amount of experimentation and development in Europe and the United States during the middle and latter half of the 1800s, two other technological occurrences during this time stimulated the emergence of the internal combustion engine. In 1859, the discovery of crude oil in Pennsylvania finally made available the development of reliable fuels which could be used in these newly developed engines. Up to this time, the lack of good, consistent fuels was a major drawback in engine development. Fuels like whale oil, coal gas, mineral oils, coal, and gun powder which were available before this time were less than ideal for engine use and development. It still took many years before products of the petroleum industry evolved from the first crude oil to gasoline, the automobile fuel of the 20th century. However, improved hydrocarbon products began to appear as early

EARLY HISTORY

During the second half of the 19th century, many different styles of internal combustion engines were built and tested. Reference [29] is suggested as a good history of this period. These engines operated with variable success and dependability using many different mechanical systems and engine cycles. The first fairly practical engine was invented by J.J.E. Lenoir (1822-1900) and appeared on the scene about 1860 (Fig. 3-19). During the next decade, several hundred of these engines were built with power up to about 4.5 kW (6 hp) and mechanical efficiency up to 5%. The Lenoir engine cycle is described in Section 3-13. In 1867 the Otto-Langen engine, with efficiency improved to about 11%, was first introduced, and several thousand of these were produced during the next decade. This was a type of atmospheric engine with the power stroke propelled by atmospheric pressure acting against a vacuum. Nicolaus A. Otto (1832-1891) and Eugen Langen (1833-1895) were two of many engine inventors of this period. During this time, engines operating on the same basic four-stroke cycle as the modern automobile engine began to evolve as the best design. Although many people were working on four-stroke cycle design, Otto was given credit when his prototype engine was built in 1876.In the 1880s the internal combustion engine first appeared in automobiles Also in this decade the two-stroke cycle engine became practical and was manufactured in large numbers.
By 1892, Rudolf Diesel (1858-1913) had perfected his compression ignition engine into basically the same diesel engine known today. This was after years of development work which included the use of solid fuel in his early experimental engines. Early compression ignition engines were noisy, large, slow, single-cylinder engines. They were, however, generally more efficient than spark ignition engines. It wasn't until the 1920s that multicylinder compression ignition engines were made small enough to be used with automobiles and trucks.

1-3 ENGINE CLASSIFICATIONS

Internal combustion engines can be classified in a number of different ways:
1. Types of Ignition
(a) Spark Ignition (SI). An SI engine starts the combustion process in each cycle by use of a spark plug. The spark plug gives a high-voltage electrical discharge between two electrodes which ignites the air-fuel mixture in the combustion chamber surrounding the plug. In early engine development, before the invention of the electric spark plug, many forms of torch holes were used to initiate combustion from an external flame.

(b) Compression Ignition (CI). The combustion process in a CI engine starts
when the air-fuel mixture self-ignites due to high temperature in the combustion
chamber caused by high compression.

2. Engine Cycle
(a) Four-Stroke Cycle. A four-stroke cycle experiences four piston movements
over two engine revolutions for each cycle.

(b) Two-Stroke Cycle. A two-stroke cycle has two piston movements over one
revolution for each cycle.
Three-stroke cycles and six-stroke cycles were also tried in early engine development

3. Valve Location 
(a) Valves in head (overhead valve), also called I Head engine.

(b) Valves in block (flat head), also called L Head engine. Some historic
engines with valves in block had the intake valve on one side of the cylinder
and the exhaust valve on the other side. These were called T Head
engines.


HISTORIC-RADIAL ENGINES

There are at least two historic examples of radial engines being mounted with the crankshaft fastened to the vehicle while the heavy bank of radial cylinders rotated around the stationary crank. The Sopwith Camel, a very successful World War I fighter aircraft, had the engine so mounted with the propeller fastened to the rotating bank of cylinders. The gyroscopic forces generated by the large rotating engine mass allowed these planes to do some maneuvers which were not possible with other airplanes, and restricted them from some other maneuvers. Snoopy has been flying a Sopwith Camel in his battles with the Red Baron for many years. The little-known early Adams-Farwell automobiles had three- and five-cylinder radial engines rotating in a horizontal plane with the stationary crankshaft mounted vertically. The gyroscopic effects must have given these automobiles very unique steering characteristics Carburetor Venturi flow device which meters the proper amount of fuel into the air flow by means of a pressure differential. For many decades it was the basic fuel metering system on all automobile (and other) engines. It is still used on lowcost small engines like lawn mowers, but is uncommon on new automobiles.
Catalytic converter Chamber mounted in exhaust flow containing catalytic material that promotes reduction of emissions by chemical reaction. Combustion chamber The end of the cylinder between the head and the piston face where combustion occurs. The size of the combustion chamber continuously changes from a minimum volume when the piston is at TDC to a maximum when the piston is at BDC. The term "cylinder" is sometimes synonymous with "combustion chamber" (e.g., "the engine was firing on all cylinders"). Some engines have open combustion chambers which consist of one chamber for each cylinder. Other engines have divided chambers which consist of dual chambers on each cylinder connected by an orifice passage.
Connecting rod Rod connecting the piston with the rotating crankshaft, usually made of steel or alloy forging in most engines but may be aluminum in some small engines. Connecting rod bearing Bearing where connecting rod fastens to crankshaft. Cooling fins Metal fins on the outside surfaces of cylinders and head of an aircooled engine. These extended surfaces cool the cylinders by conduction and convection. Crankcase Part of the engine block surrounding the rotating crankshaft. In many engines, the oil pan makes up part of the crankcase housing.Crankshaft Rotating shaft through which engine work output is supplied to external
systems. The crankshaft is connected to the engine block with the main bearings. It is rotated by the reciprocating pistons through connecting rods connected to the crankshaft, offset from the axis of rotation. This offset is sometimes called crank throw or crank radius. Most crankshafts are made of forged steel, while some are made of cast iron.
Cylinders The circular cylinders in the engine block in which the pistons reciprocate back and forth. The walls of the cylinder have highly polished hard surfaces. Cylinders may be machined directly in the engine block, or a hard metal (drawn steel) sleeve may be pressed into the softer metal block. Sleeves may be dry sleeves, which do not contact the liquid in the water jacket, or wet sleeves, which form part of the water jacket. In a few engines, the cylinder walls are given a knurled surface to help hold a lubricant film on the walls. In some very rare cases, the cross section of the cylinder is not round. Exhaust manifold Piping system which carries exhaust gases away from the engine cylinders, usually made of cast iron. Exhaust system Flow system for removing exhaust gases from the cylinders, treating them, and exhausting them to the surroundings. It consists of an exhaust manifold which carries the exhaust gases away from the engine, a thermal or catalytic converter to reduce emissions, a muffler to reduce engine noise, and a tailpipe to carry the exhaust gases away from the passenger compartment.
Fan Most engines have an engine-driven fan to increase air flow through the radiator and through the engine compartment, which increases waste heat removal from the engine. Fans can be driven mechanically or electrically, and can run continuously or be used only when needed.
Flywheel Rotating mass with a large moment of inertia connected to the crankshaft of the engine. The purpose of the flywheel is to store energy and furnish a large angular momentum that keeps the engine rotating between power strokes and smooths out engine operation. On some aircraft engines the propeller serves as the flywheel, as does the rotating blade on many lawn mowers. Fuel injector A pressurized nozzle that sprays fuel into the incoming air on SI engines or into the cylinder on CI engines. On SI engines, fuel injectors are located at the intake valve ports on multipoint port injector systems and upstream at the intake manifold inlet on throttle body injector systems. In a few SI engines, injectors spray directly into the combustion chamber.
Fuel pump Electrically or mechanically driven pump to supply fuel from the fuel tank (reservoir) to the engine. Many modern automobiles have an electric fuel pump mounted submerged in the fuel tank. Some small engines and early automobiles had no fuel pump, relying on gravity feed.

HISTORIC-FUEL PUMPS

Lacking a fuel pump, it was necessary to back Model T Fords (1909-1927) up high-slope hills becauseofthelocation ofthe fuel tank relative to the engine. Glow plug Small electrical resistance heater mounted inside the combustion chamber of many CI engines, used to preheat the chamber enough so that combustion will occur when first starting a cold engine. The glow plug is turned off after the engine is started.
Head The piece which closes the end of the cylinders, usually containing part of the clearance volume of the combustion chamber. The head is usually cast iron or aluminum, and bolts to the engine block. In some less common engines. The head is one piece with the block. The head contains the spark plugs in SI engines and the fuel injectors in CI engines and some SI engines. Most modern engines have the valves in the head, and many have the camshaft(s) positioned
there also (overhead valves and overhead cam). Head gasket Gasket which serves as a sealant between the engine block and head where they bolt together. They are usually made in sandwich construction of metal and composite materials. Some engines use liquid head gaskets. Intake manifold Piping system which delivers incoming air to the cylinders, usually made of cast metal, plastic, or composite material. In most SI engines, fuel is added to the air in the intake manifold system either by fuel injectors or with a carburetor. Some intake manifolds are heated to enhance fuel evaporation. The individual pipe to a single cylinder is called a runner.
Main bearing The bearings connected to the engine block in which the crankshaft rotates. The maximum number of main bearings would be equal to the number of pistons plus one, or one between each set of pistons plus the two ends. On some less powerful engines, the number of main bearings is less than this maximum.
Oil pan Oil reservoir usually bolted to the bottom of the engine block, making up part of the crankcase. Acts as the oil sump for most engines. Oil pump Pump used to distribute oil from the oil sump to required lubrication points. The oil pump can be electrically driven, but is most commonly mechanically driven by the engine. Some small engines do not have an oil pump and
are lubricated by splash distribution. Oil sump Reservoir for the oil system of the engine, commonly part of the crankcase. Some engines (aircraft) have a separate closed reservoir called a dry sump.
Piston The cylindrical-shaped mass that reciprocates back and forth in the cylinder, transmitting the pressure forces in the combustion chamber to the rotating crankshaft. The top of the piston is called the crown and the sides are called the skirt. The face on the crown makes up one wall of the combustion chamber and may be a flat or highly contoured surface. Some pistons contain an indented bowl in the crown, which makes up a large percent of the clearance volume. Pistons are made of cast iron, steel, or aluminum. Iron and steel pistons can have sharper corners because of their higher strength. They also have lower thermal expansion, which allows for tighter tolerances and less crevice volume. Aluminum pistons are lighter and have less mass inertia. Sometimes synthetic or composite materials are used for the body of the piston, with only the crown made of metal. Some pistons have a ceramic coating on the face. Piston rings Metal rings that fit into circumferential grooves around the piston and form a sliding surface against the cylinder walls. Near the top of the piston are Sec. 1-5 EngineComponents 23 usually two or more compression rings made of highly polished hard chrome steel. The purpose of these is to form a seal between the piston and cylinder walls and to restrict the high-pressure gases in the combustion chamber from leaking past the piston into the crankcase (blowby). Below the compression rings on the piston is at least one oil ring, which assists in lubricating the cylinder walls and scrapes away excess oil to reduce oil consumption.
Push rods Mechanical linkage between the camshaft and valves on overhead valve engines with the camshaft in the crankcase. Many push rods have oil passages through their length as part of a pressurized lubrication system. Radiator Liquid-to-air heat exchanger of honeycomb construction used to remove heat from the engine coolant after the engine has been cooled. The radiator is usually mounted in front of the engine in the flow of air as the automobile moves forward. An engine-driven fan is often used to increase air flow through the radiator.
Spark plug Electrical device used to initiate combustion in an SI engine by creating a high-voltage discharge across an electrode gap. Spark plugs are usually made of metal surrounded with ceramic insulation. Some modern spark plugs have built-in pressure sensors which supply one of the inputs into engine control.
Speed control-cruise control Automatic electric-mechanical control system that keeps the automobile operating at a constant speed by controlling engine speed. Starter Several methods are used to start IC engines. Most are started by use of an electric motor (starter) geared to the engine flywheel. Energy is supplied from an electric battery.
On some very large engines, such as those found in large tractors and construction equipment, electric starters have inadequate power, and small IC engines are used as starters for the large IC engines. First the small engine is started with the normal electric motor, and then the small engine engages gearing on the flywheel of the large engine, turning it until the large engine starts. Early aircraft engines were often started by hand spinning the propeller, which also served as the engine flywheel. Many small engines on lawn mowers and similar equipment are hand started by pulling a rope wrapped around a pulley connected to the crankshaft.
Compressed air is used to start some large engines. Cylinder releasevalves are opened, which keeps the pressure from increasing in the compression strokes. Compressed air is then introduced into the cylinders, which rotates the engine in a free-wheeling mode. When rotating inertia is established, the release valves are closed and the engine is fired.

HISTORIC-STARTERS

Early automobile engines were started with hand cranks that connected with the crankshaft of the engine. This was a difficult and dangerous process, sometimes resulting in broken fingers and arms when the engine would fire and snap back the hand crank. The first electric starters appeared on the 1912Cadillac automobiles, invented by C. Kettering, who was motivated when his friend was killed in the process of hand starting an automobile . Supercharger Mechanical compressor powered off of the crankshaft, used to compress incoming air of the engine. Throttle Butterfly valve mounted at the upstream end of the intake system, used to control the amount of air flow into an SI engine. Some small engines and stationary constant-speed engines have no throttle.Turbocharger Turbine-compressor used to compress incoming air into the engine.
The turbine is powered by the exhaust flow of the engine and thus takes very little useful work from the engine. Valves Used to allow flow into and out of the cylinder at the proper time in the
cycle. Most engines use poppet valves, which are spring loaded closed and pushed open by camshaft action (Fig. 1-12). Valves are mostly made of forged steel. Surfaces against which valves close are called valve seats and are made of hardened steel or ceramic. Rotary valves and sleeve valves are sometimes used, but are much less common. Many two-stroke cycle engines have ports (slots) in the side of the cylinder walls instead of mechanical valves.
Water jacket System of liquid flow passages surrounding the cylinders, usually constructed as part of the engine block and head. Engine coolant flows through the water jacket and keeps the cylinder walls from overheating. The coolant is usually a water-ethylene glycol mixture. Water pump Pump used to circulate engine coolant through the engine and radiator. It is usually mechanically run off of the engine.
Wrist pin Pin fastening the connecting rod to the piston (also called the piston pin). 1-6 BASIC ENGINE CYCLES Most internal combustion engines, both spark ignition and compression ignition, operate on either a four-stroke cycle or a two-stroke cycle. These basic cycles are fairly standard for all engines, with only slight variations found in individual designs

Four-Stroke SI Engine Cycle 

1. First Stroke: Intake Stroke or Induction The piston travels from TDC to BDC with the intake valve open and exhaust valve closed. This creates an increasing volume in the combustion chamber, which in turn creates a vacuum. The resulting pressure differential through the intake system from atmospheric pressure on the outside to the vacuum on the inside causes air to be pushed into the cylinder. As the air passes through the intake system, fuel is added to it in the desired amount by means of fuel injectors or a carburetor.


2. Second Stroke: Compression Stroke When the piston reaches BDC, the intake valve closes and the piston travels back to TDC with all valves closed. This compresses the air-fuel mixture, raising both the pressure and temperature in the cylinder. The finite time required to close the intake valve means that actual compression doesn't start until sometime aBDC. Near the end of the compression stroke, the spark plug is fired and combustion is initiated.

3. Combustion Combustion of the air-fuel mixture occurs in a very short but finite length of time with the piston near TDC (i.e., nearly constant-volume combustion). It starts near the end of the compression stroke slightly bTDC and lasts into the power stroke slightly aTDC. Combustion changes the composition of the gas mixture to that of exhaust products and increases the temperature in the cylinder to a very high peak value. This, in turn, raises the pressure in the cylinder to a very high peak value.

4. Third Stroke: Expansion Stroke or Power Stroke With all valves closed, the high pressure created by the combustion process pushes the piston away from TDC. This is the stroke which produces the work output of the engine cycle. As the piston travels from TDC to BDC, cylinder volume is increased, causing pressure and temperature to drop.

5. Exhaust Blowdown Late in the power stroke, the exhaust valve is opened and exhaust blow down occurs. Pressure and temperature in the cylinder are still high relative to the surroundings at this point, and a pressure differential is created through the exhaust system which is open to atmospheric pressure. This pressure differential causes much of the hot exhaust gas to be pushed out of the cylinder and through the exhaust system when the piston is near BDC. This exhaust gas carries away a high amount of enthalpy, which lowers the cycle thermal efficiency. Opening the exhaust valve before BDC reduces the work obtained during the power stroke but is required because of the finite time needed for exhaust blowdown.

6. Fourth Stroke: Exhaust Stroke By the time the piston reaches BDC, exhaust blowdown is complete, but the cylinder is still full of exhaust gases at approximately atmospheric pressure. With the exhaust valve remaining open, the piston now travels from BDC to TDC in the exhaust stroke. This pushes most of the remaining exhaust gases out of the cylinder into the exhaust system at about atmospheric pressure, leaving only that trapped in the clearance volume when the piston reaches TDC. Near the end of the exhaust stroke bTDC, the intake valve starts to
open, so that it is fully open by TDC when the new intake stroke starts the next cycle. Near TDC the exhaust valve starts to close and finally is fully closed sometime aTDC. This period when both the intake valve and exhaust valve are open is called valve overlap.

Four-Stroke CI Engine Cycle
 1. First Stroke: Intake Stroke The same as the intake stroke in an SI engine with one major difference: no fuel is added to the incoming air.

2. Second Stroke: Compression Stroke The same as in an SI engine except that only air is compressed and compression is to higher pressures and temperature. Late in the compression stroke fuel is injected directly into the combustion chamber, where it mixes with the very hot air. This causes the fuel to evaporate and self-ignite, causing combustion to start.

3. Combustion Combustion is fully developed by TDC and continues at about constant pressure until fuel injection is complete and the piston has started towards BDC.

4. Third Stroke: Power Stroke The power stroke continues as combustion ends and the piston travels towards BDC.

5. Exhaust Blowdown Same as with an SI engine.

6. Fourth Stroke: Exhaust Stroke Same as with an SI engine.

Two-Stroke SI Engine Cycle

1. Combustion With the piston at TDC combustion occurs very quickly, raising the temperature and pressure to peak values, almost at constant volume.
2. First Stroke: Expansion Stroke or Power Stroke Very high pressure created by the combustion process forces the piston down in the power stroke. The expanding volume of the combustion chamber causes pressure and temperature to decrease as the piston travels towards BDC.
3. Exhaust Blowdown At about 75° bBDC, the exhaust valve opens and blowdown occurs. The exhaust valve may be a poppet valve in the cylinder head, or it may be a slot in the side of the cylinder which is uncovered as the piston approaches BDC. After blowdown the cylinder remains filled with exhaust gas at lower pressure.
4. Intake and Scavenging When blowdown is nearly complete, at about 50° bBDC, the intake slot on the side of the cylinder is uncovered and intake air-fuel enters under pressure. Fuel is added to the air with either a carburetor or fuel injection. This incoming mixture pushes much of the remaining exhaust gases out the open exhaust valve and fills the cylinder with a combustible air-fuel mixture, a process called scavenging. The piston passes BDC and very quickly covers the intake port and then the exhaust port (or the exhaust valve closes).

0 comments:

Post a Comment

Which is the best car of 2014?