Translate

Monday, June 2, 2014

ABS (Anti-lock braking system)


ABS CONTROL SYSTEM

The ABS is a four-wheel system that prevents wheel lock-up by automatically modulating the brake pressure during an emergency stop. By preventing the wheels from locking, it enables the driver to maintain steering control and to stop in the shortest possible distance under most conditions. During normal braking, the ABS and non-ABS brake pedal feel will be the same. During ABS operation, a pulsation can be felt in the brake pedal, accompanied by a fall and then rise in brake pedal height and a clicking sound. An anti-lock braking system (ABS) (translated from German, Anti-Blockier System) is a safety system on motor vehicles which prevents the wheels from locking while braking.

A rotating road wheel allows the driver to maintain steering control under heavy braking, by preventing a locked wheel or skid, and allowing the wheel to continue to forward roll and create lateral control, as directed by driver steering inputs. Disadvantages of the system include increased braking distances under some limited circumstances (ice, snow, gravel, "soft" surfaces), and the creation of a "false sense of security" among drivers who do not understand the operation, and limitations of ABS.

Since it came into widespread use in production cars (with "version 2" in 1978), ABS has made considerable progress. Recent versions not only handle the ABS function itself (i.e. preventing wheel locking under braking), but also electronic control of the front-to-rear bias known as electronic brakeforce distribution (EBD), traction control system (TCS or ASR), an "emergency" brake assist (BA, EBA or HBA), and electronic stability control (ESP, ESC or DSC), amongst others. 

History

Anti-lock braking systems were first developed for aircraft in 1929, by the French automobile and aircraft pioneer, Gabriel Voisin, as threshold braking an airplane is nearly impossible. An early system was Dunlop's Maxaret system, introduced in the 1950s and still in use on some aircraft models.

A fully mechanical system saw limited automobile use in the 1960s in the Ferguson P99 racing car, the Jensen FF and the experimental all wheel drive Ford Zodiac, but saw no further use; the system proved expensive and, in automobile use, somewhat unreliable. However, a limited form of anti-lock braking, utilizing a valve which could adjust front to rear brake force distribution when a wheel locked, was fitted to the 1964 Austin 1800.

ABS brakes on a BMW motorcycleChrysler, together with the Bendix Corporation, introduced a crude, limited production ABS system on the 1971 Imperial. Called "Sure Brake", it was available for several years, and had a satisfactory performance and reliability record. Ford also introduced anti lock brakes on the Lincoln Continental Mark III and the Ford LTD station wagon, called "Sure Trak". The German firms Bosch and Mercedes-Benz had been co-developing anti-lock braking technology since the 1930s, and introduced the first completely electronic 4-wheel multi-channel ABS system in trucks and the Mercedes-Benz S-Class in 1978. ABS Systems based on this more modern Mercedes design were later introduced on other cars and motorcycles. General Motors introduced the "Trackmaster" ABS on their Cadillac models in 1971 as an option that was operational on the rear wheels for RWD models

In 1988 BMW became the world's first motorcycle manufacturer to introduce an electronic/hydraulic ABS system, this on their BMW K100. In 1992 Honda launched its first ABS system, this on the ST1100 Pan European. In 1997 Suzuki launched its GSF1200SA (Bandit) with ABS.

Operation 

 

The anti-lock brake controller is also known as the CAB (Controller Anti-lock Brake).

A typical ABS is composed of a central electronic control unit (ECU), four wheel speed sensors (one for each wheel), and two or more hydraulic valves within the vehicle brake circuit. The ECU constantly monitors the rotational speed of each wheel. When it senses that any number of wheels are rotating considerably slower than the others (a condition that is likely to bring it to lock - see note below), it actuates the valves to decrease the pressure on the specific braking circuit for the individual wheel, effectively reducing the braking force on that wheel. The wheel(s) then turn faster; when they turn too fast, the force is reapplied. This process is repeated continuously, and this causes the characteristic pulsing feel through the brake pedal. A typical anti-lock system can apply and release braking pressure up to 20 times a second.

Note: The ECU needs to determine when some of the wheels turn considerably slower than any of the others because when the car is turning the two wheels towards the center of the curve inherently move slightly slower than the other two – which is the reason why a differential is used in virtually all commercial cars.
The sensors can become contaminated with metallic dust, or other contaminants, and fail to correctly detect wheel slip; this is not always picked up by the internal ABS controller diagnostic.[citation needed] In this occurrence, the ABS warning light will usually be illuminated on the instrument panel, and the ABS will be disabled until the fault is rectified. 

Anti-lock Brake Systems (ABS) operate as follows:
  1. When the brakes are applied, fluid is forced from the brake master cylinder outlet ports to the HCU inlet ports. This pressure is transmitted through four normally open solenoid valves contained inside the HCU, then through the outlet ports of the HCU to each wheel.
  2. The primary (rear) circuit of the brake master cylinder feeds the front brakes.
  3. The secondary (front) circuit of the brake master cylinder feeds the rear brakes.
  4. If the anti-lock brake control module senses a wheel is about to lock, based on anti-lock brake sensor data, it closes the normally open solenoid valve for that circuit. This prevents any more fluid from entering that circuit.
  5. The anti-lock brake control module then looks at the anti-lock brake sensor signal from the affected wheel again.
  6. If that wheel is still decelerating, it opens the solenoid valve for that circuit.
  7. Once the affected wheel comes back up to speed, the anti-lock brake control module returns the solenoid valves to their normal condition allowing fluid flow to the affected brake.
  8. The anti-lock brake control module monitors the electromechanical components of the system.
  9. Malfunction of the anti-lock brake system will cause the anti-lock brake control module to shut off or inhibit the system. However, normal power-assisted braking remains.
  10. Loss of hydraulic fluid in the brake master cylinder will disable the anti-lock system. [li[The 4-wheel anti-lock brake system is self-monitoring. When the ignition switch is turned to the RUN position, the anti-lock brake control module will perform a preliminary self-check on the anti-lock electrical system indicated by a three second illumination of the yellow ABS wanting indicator.
  11. During vehicle operation, including normal and anti-lock braking, the anti-lock brake control module monitors all electrical anti-lock functions and some hydraulic operations.
  12. Each time the vehicle is driven, as soon as vehicle speed reaches approximately 20 km/h (12 mph), the anti-lock brake control module turns on the pump motor for approximately one-half second. At this time, a mechanical noise may be heard. This is a normal function of the self-check by the anti-lock brake control module.
  13. When the vehicle speed goes below 20 km/h (12 mph), the ABS turns off.
  14. Most malfunctions of the anti-lock brake system and traction control system, if equipped, will cause the yellow ABS warning indicator to be illuminated.

Additional developments

Modern Electronic Stability Control (ESC or ESP) systems are an evolution of the ABS concept. Here, a minimum of two additional sensors are added to help the system work: these are a steering wheel angle sensor, and a gyroscopic sensor. The theory of operation is simple: when the gyroscopic sensor detects that the direction taken by the car does not coincide with what the steering wheel sensor reports, the ESC software will brake the necessary individual wheel(s) (up to three with the most sophisticated systems), so that the vehicle goes the way the driver intends. The steering wheel sensor also helps in the operation of Cornering Brake Control (CBC), since this will tell the ABS that wheels on the inside of the curve should brake more than wheels on the outside, and by how much.

Traction control

The ABS equipment may also be used to implement traction control system (TCS, ASR) on acceleration of the vehicle. If, when accelerating, the tire loses traction, the ABS controller can detect the situation and take suitable action so that traction is regained. Manufacturers often offer this as a separately priced option even though the infrastructure is largely shared with ABS. More sophisticated versions of this can also control throttle levels and brakes simultaneously.

Mercedes-Benz was the first to offer this electronic traction control system in 1985.


Effectiveness
A 2003 Australian study  by Monash University Accident Research Centre found that ABS:

Reduced the risk of multiple vehicle crashes by 18 percent, Reduced the risk of run-off-road crashes by 35 percent. On high-traction surfaces such as bitumen, or concrete, many (though not all) ABS-equipped cars are able to attain braking distances better (i.e. shorter) than those that would be easily possible without the benefit of ABS. In real world conditions even an alert, skilled driver without ABS would find it difficult, even through the use of techniques like threshold braking, to match or improve on the performance of a typical driver with a modern ABS-equipped vehicle. ABS reduces chances of crashing, and/or the severity of impact. The recommended technique for non-expert drivers in an ABS-equipped car, in a typical full-braking emergency, is to press the brake pedal as firmly as possible and, where appropriate, to steer around obstructions. In such situations, ABS will significantly reduce the chances of a skid and subsequent loss of control.

In gravel, sand and deep snow, ABS tends to increase braking distances. On these surfaces, locked wheels dig in and stop the vehicle more quickly. ABS prevents this from occurring. Some ABS calibrations reduce this problem by slowing the cycling time, thus letting the wheels repeatedly briefly lock and unlock. The primary benefit of ABS on such surfaces is to increase the ability of the driver to maintain control of the car rather than go into a skid — though loss of control remains more likely on soft surfaces like gravel or slippery surfaces like snow or ice. On a very slippery surface such as sheet ice or gravel, it is possible to lock multiple wheels at once, and this can defeat ABS (which relies on comparing all four wheels, and detecting individual wheels skidding). Availability of ABS relieves most drivers from learning threshold braking.

A June 1999 National Highway Traffic Safety Administration (NHTSA) study found that ABS increased stopping distances on loose gravel by an average of 22 percent.
According to the NHTSA,

"ABS works with your regular braking system by automatically pumping them. In vehicles not equipped with ABS, the driver has to manually pump the brakes to prevent wheel lockup. In vehicles equipped with ABS, your foot should remain firmly planted on the brake pedal, while ABS pumps the brakes for you so you can concentrate on steering to safety."

When activated, some earlier ABS systems caused the brake pedal to pulse noticeably. As most drivers rarely or never brake hard enough to cause brake lock-up, and a significant number rarely bother to read the car's manual,[citation needed] this may not be discovered until an emergency. When drivers do encounter an emergency that causes them to brake hard, and thus encounter this pulsing for the first time, many are believed to reduce pedal pressure, and thus lengthen braking distances, contributing to a higher level of accidents than the superior emergency stopping capabilities of ABS would otherwise promise. Some manufacturers have therefore implemented a brake assist system that determines that the driver is attempting a "panic stop" and the system automatically increases braking force where not enough pressure is applied. Nevertheless, ABS significantly improves safety and control for drivers in most on-road situations. 
Vehicles with ABS are equipped with a pedal-actuated, dual-brake system. The basic hydraulic braking system consists of the following:
  • ABS hydraulic control valves and electronic control unit
  • Brake master cylinder
  • Necessary brake tubes and hoses
The anti-lock brake system consists of the following components:
  • Hydraulic Control Unit (HCU).
  • Anti-lock brake control module.
  • Front anti-lock brake sensors / rear anti-lock brake sensors.
Most light trucks and SUVs use a form of ABS known as Rear Wheel ABS. The Rear Wheel Anti Lock (RWAL) system reduces the occurrence of rear wheel lockup during severe braking by regulating rear hydraulic line pressure. The system monitors the speed of the rear wheels during braking. The Electronic Brake Control Module (EBCM) processes these values to produce command controls to prevent the rear wheels from locking.
This system uses three basic components to control hydraulic pressure to the rear brakes. These components are:
  • Electronic Brake Control Module
  • Anti-Lock Pressure Valve
  • Vehicle Speed Sensor 
ELECTRONIC BRAKE CONTROL MODULE:
The EBCM mounted on a bracket next to the master cylinder, contains a microprocessor and software for system operation.
ANTI-LOCK PRESSURE VALVE:
The Anti-Lock Pressure Valve (APV) is mounted to the combination valve under the master cylinder, has an isolation valve to maintain or increase hydraulic pressure and a dump valve to reduce hydraulic pressure.
VEHICLE SPEED SENSOR:
The Vehicle Speed Sensor (VSS) located on the left rear of the transmission on two-wheel drive trucks and on the transfer case of four-wheel drive vehicles, produces an AC voltage signal that varies in frequency according to the output shaft speed. On some vehicles the VSS is located in the rear differential.
BASE BRAKING MODE:
During normal braking, the EBCM receives a signal from the stop lamp switch and begins to monitor the vehicle speed line. The isolation valve is open and the dump valve is seated. This allows fluid under pressure to pass through the APV and travel to the rear brake channel. The reset switch does not move because hydraulic pressure is equal on both sides.
ANTILOCK BRAKING MODE:
During a brake application the EBCM compares vehicle speed to the program built into it. When it senses a rear wheel lock-up condition, it operates the anti lock pressure valve to keep the rear wheels from locking up. To do this the EBCM uses a three-step cycle:
  • Pressure Maintain
  • Pressure Decrease
  • Pressure Increase
PRESSURE MAINTAIN:
During pressure maintain the EBCM energizes the isolation solenoid to stop the flow of fluid from the master cylinder to the rear brakes. The reset switch moves when the difference between the master cylinder line pressure and the rear brake channel pressure becomes great enough. If this happens, it grounds the EBCM logic circuit.
PRESSURE DECREASE:
During pressure decrease the EBCM keeps the isolation solenoid energized and energizes the dump solenoid. The dump valve moves off its seat and fluid under pressure moves into the accumulator. This action reduces rear pipe pressure preventing rear lock-up. The reset switch grounds to tell the EBCM that pressure decrease has taken place.
PRESSURE INCREASE:
During pressure increase the EBCM de-energizes the dump and isolation solenoids. The dump valve reseats and holds the stored fluid in the accumulator. The isolation valve 9pens and allows the fluid from the master cylinder to flow past it and increase pressure to the rear brakes. The reset switch moves back to its original position by spring force. This action signals the EBCM that pressure decrease has ended and driver applied pressure resumes.

0 comments:

Post a Comment

Which is the best car of 2014?